Find the co-ordinates of the vertices and foci, and the equations of the asymptotes of the hyperbola

SCORE: _____ / 5 PTS

$$\frac{(y+13)^2}{16} - \frac{(x-9)^2}{36} = 1$$
. State clearly which co-ordinates are for which points.

C2=16+36

C2= 57

C= 2,13

Find the equations of the following conics.

SCORE: /9 PTS

[a] hyperbola with vertices (-10, 12) and (4, 12), and foci (5, 12) and (-11, 12)

CENTER =
$$(-10+4)$$
 [2] = $(-3,12)$ ($(x+3)^2$) = $(-3,12)$ ($(y-12)^2$) = $(-3,12)$ ($(y-12)^2$) = $(-3,12)$ ($(y-12)^2$) = $(-3,12)$

$$8^{2} = 7^{2} + 6^{2}$$

$$6^{2} = 64 - 49 = 15$$

+ 1) FOR CORPECT ORDER OF SUBTRACTION (X2-y2)

[b] ellipse with foci (-10, 11) and (2, 11), and major axis of length 16

CENTER =
$$(-10+2)$$
 = $(-4,11)$ $(-4$

$$2a = 16 \rightarrow a = 8$$

$$6^{2} = 8^{2} - b^{2}$$

$$b^{2} = 64 - 36 = 28$$

Using the distance-based definition of a hyperbola, find the equation of the hyperbola with foci $(0,\pm 8)$

SCORE: _____/ 9 PTS

such that the distances from any point on the hyperbola to the foci differ by 4. Show the algebraic work, not just the final answer.

IF
$$(x,y)$$
 is on the hyperbola,
DISTANCE FROM DISTANCE FROM $= \pm 4$
 (x,y) to $(0,-8)$ - (x,y) to $(0,-8)$ = ± 4
 (x,y) to $(0,-8)^2 = \pm 4$, (2)
 (x,y) to $(0,-8)^2 = \pm 4$, (2)
 (x,y) to $(0,-8)^2 = \pm 4$, (2)
 (x,y) to $(0,-8)$ = ± 4
 (x,y) to $(0,-8)$ = (x,y)

Find the co-ordinates of the foci, vertices, and endpoints of the minor axis of the ellipse $4x^2 + y^2 + 16x + 16y + 44 = 0$. State clearly which co-ordinates are for which points.

SCORE: _____ / 7 PTS

$$\frac{4x^2 + 16x + y^2 + 16y = -44}{4(x^2 + 4x + 4) + (y^2 + 16y + 64)} = -44 + 4 \cdot 4 + 64$$

$$\frac{4(x^2 + 4x + 4) + (y^2 + 16y + 64)}{4(x^2 + 2)^2 + (y + 8)^2 = 36}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}{9}$$

$$\frac{(x + 2)^2 + (y + 8)^2 = 36}$$